Annales Patroniensis

Annales Patroniensis

Vážení čitatelia,
V živote časopisov, rovnako ako v živote l’udí ako aj celej spoločnosti, sa nevyhnutne vyskytujú t’ažké obdobia, ktoré sa niekedy označujú aj slovom „kríza". V takomto období sa nechtiac ocitol aj náš časopis, ked’ sa nám nepodarilo do riadnej uzávierky získat' ani jediný príspevok.

Ked’že sme si však vedomí závažnosti poslania, ktoré pre slovenskú a svetovú vedu plníme, redakcia sa jednomysel'ne rozhodla prijat' jeden oneskorený článok, ktorý týmto tvorí jadro nášho posledného čísla v prvom ročníku.

Už pri svojom vzniku mali Patrónske Anály ambíciu neobmedzovat' svoj dosah a rozlet len na geograficky obmedzené územie v okolí bratislavskej Patrónky. Ambícia bol globálny, dokonca celovesmírny dosah. Redakcia svoj plán plní a do tretieho čísla, ktoré práve čítate získala príspevok až z d’alekej Dúbravky. Vlak sa rozbieha...

Ďakujeme čitatel'om za ich priazeň a spoločne sa tešíme na d’alšie vedecké príspevky v novom roku!
--- Novinky z akademického prostredia ---
Zo skúšky na fakulte elektrotechniky a informatiky:
Skúšajúci: Povedzte nám ktoré sú najdôležitejšie parametre operačných zosilňovačov?
Študent: ...nekonečné zosilnenie v otvorenej slučke. A hlavne sú nehlučné.
Skúšajúci: Nehlučné?
Študent: Áno nehlučné. To je vel'mi dôležitá vlastnost' napríklad pre medicínsku techniku. V porovnaní napríklad s reléovými zosilňovačmi sú operačné zosilňovače nehlučné. To je dôležitá vlastnost' a výhoda.

Skúšajúci: \qquad
Skúšajúci: snaží sa zachovat' dekórum
Skúšajúci: \qquad
Skúšajúci: ...padá zo stoličky v kŕčoch od smiechu

Príhoda ale inšpirovala vznik novej, vysoko perspektívnej technológie - elektromechanický operačný zosilňovač na báze motor-generátora s planetárnou prevodovkou. Tieto operačné zosilňovače sú odolné voči elektromagnetickému rušeniu, kozmickému žiareniu, radiácii, nukleárnemu elektromagnetickému pulzu, alebo výronu koronárnej hmoty. Drobná nevýhoda je, že v studenom počasí nemusia naštartovat', ale na to už bol vypísaný výskumný grant.

Resistance transfer standard construction and measurements

doc. Ing. D.V., PhD. VKS IIa
stážista, Dúbravský Metrologický Inštitút, Bratislava
(peer reviewed version)

1. Introduction

In 1954, B. V. Hamon developed a very efficient method to transfer resistance value of a set of individual resistors to lower values by connecting them in parallel, and to higher values by connecting them in series. The so called "Resistance transfer standard" is a device, which has a number of resistors permanently connected in series, typically, $10-12$ units as shown in Figure 1. All resistors have four terminal Kelvin connections accessible. The panel terminals are conveniently arranged such, that all, or a subset of resistors can be connected in parallel, using high conductivity, external shorting bars as shown in Figure 2.

Figure 1: left - parallel connection of 10 resistors formed by the shorting bars and a parallel compensation network. Right - series connection of 10 resistors.

Hamon had proven that error on the ratio of the series and parallel combinations scales with square of the individual resistor tolerances. If, for example resistors with values known to 1 part in $10^{4}(0.01 \%)$ are used, the ratio error will be known in 1 part in 10^{8} without laboriously measuring exact values of each individual resistor [1].

2. Practical realization of Hamon network

Visit of the precision resistor factory in Japan triggered the authors to try out the concept. With good availability of high performance metal foil resistors five different Resistance transfer standard units with nominal values $10 \Omega, 100 \Omega, 1 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ were produced. Metrological characterisation commenced in December 2023.

Figure 2: Practical realization of a 12-resistor Hamon resistance transfer network.

3. Selection of resistors

Resistors are SMT type, Ultra High-Precision Z1 Foil Technology FRSM Series HighPrecision FRSM either wrap-around chip, flip chip models. The specifications of both are TCR of $\pm 0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical in the temperature range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ and absolute value tolerance 0.01%.

Due to the technology limitations, lower value metal foil resistors are typically available only in less tight tolerance. Our 20Ω chips used to build the 10Ω nominal value standard are therefore 0.25%. The resulting ratio error if no selection is done should be known in 6.25 parts in 10^{6}. Thanks to good availability, we could have purchased a larger batch and select values. Connecting two chips in parallel provides means to obtain value closer to the perfect one, circumventing the need for tighter tolerance, or trimming.

The 100Ω resistors for the 100Ω nominal value standard were not available in SMT version. A through hole version Z-foil VAR family was purchased what provided an interesting opportunity to also study sensitivity of the components (SMT/through hole) to the soldering process.

4. Selection of values

It is desirable for proper functioning of the resistance transfer standard to have the resistors equal. Not only in absolute value, but also drift. The standard can be used to provide resistances of different values by connecting different combinations in parallel, different combinations in series, or it can be used as a very accurate voltage divider. Therefore an extra effort was invested in selection of values of individual chips from the available batch. Value of each resistor from the incoming batch was measured and recorded, see Table 1.

The optimization goal was set to obtain a voltage divider (full series combination) with the lowest possible linearity error (tap to tap). A simple algorithm based on intuition, rather than thorough mathematical analysis was tested. When compared with the best combination obtained by a brute force numeric optimization, the results were very close. 12 resistors should be selected from the available batch to have closest matching value. If there is a Gaussian-like distribution, the pick should be symmetric around the peak of the distribution. Starting from the one end of the distribution (e.g. the lowest value), populate every second resistor in the standard starting from R1 to R11. The next step is to take resistors from the other end of the distribution (starting with the highest value) and populate every second resistor starting from R2 to R12. Average of two neighbour values (R1+R2, R3+R4...) will then be very close, or equal to the mean distribution value.

$\begin{gathered} 20 \Omega \text { nominal } \\ (\Omega) \end{gathered}$		100Ω nominal (Ω)	$\begin{gathered} 1 \mathrm{k} \Omega \text { nominal } \\ (\mathrm{k} \Omega) \end{gathered}$	$10 \mathrm{k} \Omega$ nominal ($\mathrm{k} \Omega$)	$\begin{gathered} 100 \mathrm{k} \Omega \\ \text { nominal }(\mathrm{k} \Omega) \end{gathered}$
19.98297		99.989374	0.999976	10.000128	99.992839
19.98320		99.991735	0.999977	10.000362	99.994640
19.98323		99.992715	0.999995	10.000424	99.995020
19.98334		99.992733	0.999995	10.000433	99.999910
19.98358		99.993265	1,000008	10.000451	100.001244
19.98546		99.993662	1,000010	10.000473	100.001350
19.98577		99.993693	1,000011	10.000503	100.001830
19.98736		99.994233	1,000015	10.000592	100.002006
19.98801		99.994310	1,000015	10.000620	100.002023
19.98847		99.994345	1,000015	10.000630	100.002049
19.98857		99.994497	1,000016	10.000660	100.002430
19.98915		99.994903	1,000017	10.000715	100.002680
19.98923		99.994999	1,000019	10.000749	100.003300
19.98964		99.995017	1,000020	10.000761	100.003646
19.99018		99.995323	1,000020	10.000635	100.005980
19.99048	19.99525		1,000021		
19.99080	19.99529		1,000036		
19.99110	19.99545		1,000040		
19.99134	19.99557		1,000048		
19.99140	19.99571		1,000052		
19.99182	19.99572		1,000070		
19.99222	19.99573		1,000081		
19.99297	19.99629		1,000083		
19.99306	19.99649		1,000088		
19.99317	19.99677		1,000088		
19.99364	19.99713		1,000096		
19.99389	19.99765		1,000103		
19.99405	20.00027		1,000111		
19.99435	20.00297		1,000118		
19.99441	20.00474		1,000125		
19.99512	20.02393				
Table 1: V Standard. Gr	of indiv colour show hips in para	al resistors used which units w lel. Orange col	for realizatio e picked for ur indicates the	of the Resistan ch device. 10 second chip.	Transfer unit uses two

\qquad

Figure 3: Value distributions of the used resistor batches. Full scale represents the manufacturer's tolerance (e.g. $\pm 0.01 \%$, or 0.25%). Photo on the right hand side shows the test rig for 4 -wire resitance value measurement before soldering..

5. PCB resistance and resistor value change due to soldering

SMT resistors are mounted on a 4-layer printed board, each copper layer is $70 \mu \mathrm{~m}$ thick. The layout is made such to provide a Kelvin style connection to each chip, as shown in Figure 4.

Figure 4: PCB layout showing the 4-wire connection to the resistors. The grid is 1 mm .

The islands on the printed board are designed to minimize current flow through potential taps. The estimated contribution of printed board including solder joint to the resistance is on order of $5 \mathrm{~m} \Omega$.
After soldering, before installation into the final enclosure all resistors on the printed board have been re-measured to assess the value change due to thermal cycle. It can be seen that manual soldering has a large detrimental effect to the value stability, the value can shift by few hundreds ppm. Soldering in an oven is better, a vapour-phase oven is recommended.

Figure 5 shows change in value for all resistors on all produced Resistance transfer standards. As expected, SMT resistors are not the best in terms of sensitivity to a heat cycle. Blue trace shows the through hole VAR family Z-foil resistors, where the value change is much lower and mainly represented by additional lead length plus PCB resistance. Resistor number 12 was soldered with extremely short leads, what possed a stress to the resistor body. After measurement, it was decided to leave about 10 mm leads on these resistors. The value seen from outside slightly shifted due to additional resistance of the leads, however the resistor itself did not suffer much thermal stress.

Figure 5: Resistor value change after soldering
6. Preliminary measurements using the fabricated Resistance Transfer Standards

Fluke 8588A multimeter calibration and drift verification at 10Ω range
Instruments used (Figure 6):

- Standard resistor CERN No. 274127 installed in an oil bath, kept at constant temperature. Nominal value 10Ω, calibrated at METAS in November 2022. Absolute value known within $\pm 0.3 \mathrm{ppm}$.
- 6010B Automatic resistance bridge
- $4220 \mathrm{~A} / 30$ Low thermal matrix scanner
- Portable standard resistor Fluke 742A-10. nominal value 10Ω
- Reference multimeter Fluke 8588A, to be calibrated
- Resistance Transfer Standard RTS-100. nominal value 100Ω

Figure 6: Measurement setup. a) automatic resistance bridge and low thermal EMF scanner, b) second scanner and measured transfer standard, c) portable standard resistor Fluke d) CERN reference resistors in oil bath

Using the bridge and the known standard resistor No. 274127, absolute value of the portable standard resistor Fluke 742A-10 was found (using 16 measurements) as:

$$
R_{R E F 10 \Omega}=10.00071225 \pm 0.0000030 \Omega
$$

Transfer uncertainty calculated by the automated measurement system was $\pm 0.02 \mathrm{ppm}$.
Following, the portable standard resistor Fluke 742A-10 was measured by the Fluke 8588A to be calibrated. The value found is:

$$
R_{8588 \text { REF } 10 \Omega}=10.0007154 \pm 0.0000033 \Omega
$$

Measurement current of 8588 A was 10 mA , integration time 500 NPLC (10 s).
Reference multimeter Fluke 8588A being calibrated, has a "gain" error at 10Ω range:

$$
\begin{gathered}
\Delta_{8588 @ 10 \Omega}=\frac{R_{8588 \text { REF } 10 \Omega}}{R_{R E F 10 \Omega}}=\frac{10.0007154 \pm 0.0000033 \Omega}{10.00071225 \pm 0.0000030 \Omega}= \\
\Delta_{8588 @ 10 \Omega}=1.000000315 \pm 0.000000446
\end{gathered}
$$

The 8588 A was last calibrated more than 2 years ago. The datasheet specification for absolute accuracy over 365 days, $\mathrm{T}_{\text {cal }} \pm 1^{\circ} \mathrm{C}$ is $7.7 \mu \Omega / \Omega$ of reading $+1.4 \mu \Omega / \Omega$ of range $(95 \%$ confidence). The multimeter stability seems to be much better than the datasheet specification.

Various measurements using the Resistance Transfer Standard RTS-100

Parallel connection

First measurement of the home made, 100Ω nominal value Resistance Transfer Standard is parallel combination of the R1-R10 resistors, using the shorting bar. The parallel compensation network was not used for this measurement. The value measured by the multimeter is later calibrated and uncertainty calculated in an attempt to obtain a real absolute value of the resistance.

First, the reference resistance value of the RTS-100 is obtained using the bridge is (from 16 measurements)

$$
R_{\text {BRIDGE }}=9.9998701 \pm 0.0000029 \Omega
$$

Following, the very same resistor was measured using Fluke 8588A (376 measurements, 10 second integration time)

$$
R_{\text {FLUKE RAW }}=9.9998725 \pm 0.0000031 \Omega
$$

Using the calibration factor obtained earlier, we can correct the raw value measured by the 8588A to obtain true resistance value:

$$
\begin{gathered}
R_{\text {FLUKE CORR }}=\frac{R_{F L U K E}}{\Delta_{8588 @ 10 \Omega}}=\frac{9.9998725 \pm 0.0000031 \Omega}{1.000000315 \pm 0.000000446}= \\
R_{F L U K E ~ C O R R}=9.9998694 \pm 0.0000031 \Omega
\end{gathered}
$$

Both values obtained by the bridge (reference) and corrected/calibrated multimeter show good agreement:

$$
\begin{gathered}
R_{\text {BRIDGE }}=9.9998701 \pm 0.0000029 \Omega \\
R_{\text {FLUKE CORR }}=9.9998694 \pm 0.0000031 \Omega
\end{gathered}
$$

Voltage calibration of the Fluke 8588 A multimeter for 10 V range and use of the multimeter transfer mode

Apart of resistances, the standards laboratory at CERN possess also a very accurate 10 mA current source, called PBC and a set of voltage standards Fluke 732A and 732B. Both are regularly calibrated at METAS and their values are traceable to the Swiss national standards. An alternative way to measure the RTS-100 resistance value would be using voltages and currents and profiting from a short time transfer accuracy of Fluke 8588A.
The reference current of PBC is specified to have an absolute value with an uncertainty lower than 0.5 ppm , i.e. $I_{P B C}=10.000000 \pm 0.000005 \mathrm{~mA}$. Compliance voltage of the current source is $\sim 11 \mathrm{~V}$, so a series combination up to $1 \mathrm{k} \Omega$ can be excited. Unit number HCRCAAB001-14 is used for the following measurements. The noise of the generated current is negligible with respect to the value uncertainty (type B uncertainty is dominant).
First, we calibrate the Fluke 8588A multimeter on the 10 V range using a known voltage $V_{\text {PBCREF }}$ from calibrated PBC's voltage output. This value is known as $10 \mathrm{~V} /-7.9 \mathrm{ppm}$ (calibrated in November 2022, traceable to METAS), and type B uncertainty of 0.5 ppm .
The reference $V_{\text {PBCREF }}$ value can be therefore calculated as

$$
V_{P B C R E F}=10 \mathrm{~V}-7.9 \mathrm{ppm}=9.9999210 \pm 0.0000050 \mathrm{~V}
$$

Fluke 8588A multimeter measured

$$
V_{8588 A R A W}=9.9999251 \pm 0.0000006 \mathrm{~V}
$$

Now we can again calculate the 10 V range gain error/calibration factor as

$$
\begin{gathered}
\Delta_{8588 @ 10 V}=\frac{V_{8588 R A W}}{V_{V P B C R E F}}=\frac{9.9999251 \pm 0.0000006 \mathrm{~V}}{9.9999210 \pm 0.0000050 \mathrm{~V}}= \\
\Delta_{8588 @ 10 \mathrm{~V}}=1.00000041 \pm 0.00000050
\end{gathered}
$$

The multimeter is now calibrated and ready for voltage drop measurement generated by the 10 mA current source, as shown in Figure 7.

Figure 7: Measurement using the PBC 10 mA constant current source and a voltage drop.
RTS-100 is now configured for series combination providing a nominal value of $1 \mathrm{k} \Omega$. Voltage drop across the series combination was measured:

$$
V_{1 k R A W}=9.9997676 \pm 0.0000008 \mathrm{~V}
$$

Voltage drop corrected for the 8588A gain error

$$
\begin{gathered}
V_{1 k C O R R}=\frac{V_{1 k R A W}}{\Delta_{8588 @ 10 \mathrm{~V}}}=\frac{9.9997676 \pm 0.0000008 \mathrm{~V}}{1.00000041 \pm 0.00000050}= \\
V_{1 k C O R R}=9.9997635 \pm 0.0000051 \mathrm{~V}
\end{gathered}
$$

Series combination resistance of RTS-100 can now be calculated using the Ohm's law as

$$
\begin{gathered}
R_{1 k P B C}=\frac{V_{1 k C O R R}}{I_{P B C}}=\frac{9.9997635 \pm 0.0000051 \mathrm{~V}}{10.000000 \pm 0.000005 \mathrm{~mA}}= \\
R_{1 k P B C}=999.97635 \pm 0.00071 \Omega
\end{gathered}
$$

RTS-100 series connection measurement using standard resistor and resistance bridge
Obtained value of the series combination ($1 \mathrm{k} \Omega$) from the previous exercise was independently verified using the resistance bridge referencing it to the standard resistor CERN No. 274308, nominal value 100Ω, calibrated by METAS in November 2022. Absolute value of the standard resistor No. 274308 is known to within $\pm 0.3 \mathrm{ppm}$. Transfer uncertainty calculated by the automated measurement system was $\pm 0.02 \mathrm{ppm}$.

$$
R_{1 \mathrm{k} \text { BRIDGE }}=999.977193 \pm 0.000299 \Omega
$$

We can compare this result to the one obtained by volt-ampere method:

$$
R_{1 k P B C}=999.97635 \pm 0.00071 \Omega
$$

Both values show good agreement.

Fluke 8588 A multimeter calibration and drift verification at 1000Ω range

The series combination from RTS-100 was subsequently measured by Fluke 8588A in resistance mode, using the 1 k range:
And subsequently by the 8588 A multimeter

$$
R_{1 k F L U K E}=999.98061 \pm 0.00012 \Omega
$$

Using the two measured values from the transfer standard measured by 8588A multimeter and resistance bridge, we can now calculate the Fluke 8588A gain error at $1 \mathrm{k} \Omega$ range:

$$
\begin{gathered}
\Delta_{8588 @ 1 k \Omega}=\frac{R_{1 k \text { FLUKE }}}{R_{1 k B R I D G E}}=\frac{999.97719 \pm 0.00030 \Omega}{999.98061 \pm 0.00012 \Omega}= \\
\Delta_{8588 @ 1 k \Omega}=0.99999658 \pm 0.00000032
\end{gathered}
$$

The datasheet specification for absolute accuracy over 365 days, $\mathrm{T}_{\text {cal }} \pm 1^{\circ} \mathrm{C}$ is $7.1 \mu \Omega / \Omega$ of reading $+0.5 \mu \Omega / \Omega$ of range (95% confidence). The multimeter stability seems to be much better than the datasheet specification.

Voltage calibration of the Fluke 8588 A multimeter for 1 V range and use of the multimeter

 transfer modeNow we will use the volt-ampere method to measure absolute values of all individual 100Ω resistors on RTS-100. We need to do a similar voltage calibration exercise as for 10 V , this time using 1.018 V output of Fluke 732B Ref. CERN TE 145112 calibrated in November 2022 and traceable to METAS (Figure 8). The reference value is
$V_{732 \mathrm{BREF}}=1.01803850 \pm 0.00000031 \mathrm{~V}$
Fluke 8588A measures (10 s integration)
$V_{8588 A+}=1.01804041 \pm 0.00000004 \mathrm{~V}$

Figure 8: Voltage standard Fluke 732B used for $1 V$ calibration

After swapping the polarity

$$
V_{8588 A-}=-1.01803836 \pm 0.00000004 \mathrm{~V}
$$

We can consider

$$
\begin{gathered}
V_{8588 A}=\frac{1.01804041 \pm 0.00000004--1.01803836 \pm 0.00000004}{2}= \\
V_{8588 A}=1.01803939 \pm 0.00000006 \mathrm{~V}
\end{gathered}
$$

The multimeter gain error at 1 V range

$$
\begin{aligned}
\Delta_{8588 @ 1 V} & =\frac{V_{8588 A}}{V_{732 B R E F}}=\frac{1.01803939 \pm 0.00000006 \mathrm{~V}}{1.01803850 \pm 0.00000031 \mathrm{~V}} \\
& =1.000000874 \pm 0.00000032
\end{aligned}
$$

Fluke 8588 A multimeter calibration and drift verification at 100Ω range
A parallel combination from RTS-1000 was used for Fluke 8588A calibration in resistance mode, using the 100Ω range:

$$
R_{100 \Omega \text { FLUKE }}=100.002836 \pm 0.000020 \Omega
$$

The same resistor measured by bridge with transfer error $\pm 0.02 \mathrm{ppm}$ calculated by the automated measurement software

$$
R_{100 \Omega \text { BRIDGE }}=100.0027226 \pm 0.000030 \Omega
$$

Using the two measured values from the transfer standard measured by 8588A multimeter and resistance bridge, we can now calculate the Fluke 8588 A gain error at $1 \mathrm{k} \Omega$ range:

$$
\begin{gathered}
\Delta_{8588 @ 100 \Omega}=\frac{R_{100 \Omega F L U K E}}{R_{100 \Omega \text { BRIDGE }}}=\frac{100.002836 \pm 0.000020 \Omega}{100.002722 \pm 0.000030 \Omega}= \\
\Delta_{8588 @ 100 \Omega}=1.0000011 \pm 0.00000036
\end{gathered}
$$

The datasheet specification for absolute accuracy over 365 days, $\mathrm{T}_{\text {cal }} \pm 1^{\circ} \mathrm{C}$ is $7.2 \mu \Omega / \Omega$ of reading $+0.5 \mu \Omega / \Omega$ of range (95% confidence). The multimeter stability seems to be much better than the datasheet specification.

Individual 100Ω resistor measurements using two methods

Final test was measurement of each individual 100Ω resistor using the V-A method with calibrated multimeter on 100Ω range. The measurement was done next day, in a different laboratory with less tight temperature control. Therefore additional type-B uncertainty was added to reflect we are not in the transfer mode anymore. Table 2 shows the detailed results.

	$\begin{gathered} \mathrm{V}_{8588} \\ \text { corrected (V) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{V}-\mathrm{A}} \\ \operatorname{method}(\Omega) \end{gathered}$	Uncerntainty	$\begin{aligned} & \mathrm{R}_{8588 \mathrm{direct}} \\ & \text { corrected }(\Omega) \end{aligned}$	Uncerntainty	$\begin{gathered} \text { Delta } \\ (\mu \Omega / \Omega) \end{gathered}$
R1	0.99995152	99.9951526	0.000059	99.995290	0.000036	-1.4
R2	0.99999419	99.9994196	0.000059	99.998998	0.000036	4.2
R3	0.99996242	99.9962426	0.000059	99.996255	0.000036	-0.1
R4	0.99997446	99.9974466	0.000059	99.996851	0.000036	6.0
R5	0.99997416	99.9974166	0.000059	99.997209	0.000036	2.1
R6	0.99998816	99.9988166	0.000059	99.998815	0.000036	0.0
R7	0.99996997	99.9969976	0.000059	99.996710	0.000036	2.9
R8	0.99999047	99.9990476	0.000059	99.998986	0.000036	0.6
R9	0.99997323	99.9973236	0.000059	99.997100	0.000036	2.2
R10	0.99998161	99.9981616	0.000059	99.998021	0.000036	1.4
R11	0.99997676	99.9976766	0.000059	99.997407	0.000036	2.7
R12	0.99999505	99.9995056	0.000059	99.999007	0.000036	5.0
		$\begin{aligned} & \text { Sum V-A method } \\ & 999.976025 \\ & \pm 0.000187 \Omega \end{aligned}$		Sum direct measurement 999.974235		

Table 2: Measured values of individual 100Ω resistors in RTS-100

Now we can compare four independent measurements of the same resistance value:
By reference resistance bridge:

$$
R_{1 k \text { BRIDGE }}=999.977193 \pm 0.000299 \Omega
$$

By volt-ampere method:

$$
R_{1 k P B C}=999.97635 \pm 0.00071 \Omega
$$

By volt-ampere method, measuring each individual resistor:

$$
R_{V A 10 \times 100 \Omega}=999.976025 \pm 0.000187 \Omega
$$

And by measuring each individual resistor using calibrated multimeter

$$
R_{M U L T ~ 10 x 100 \Omega}=999.974025 \pm 0.001314 \Omega
$$

Figure 9: Graphical comparison of four different measurements

7. Future work

Due to lack of time and absence of the parallel compensation network the transfer of ratios was not yet measured. We are looking forward to complete this step in a very near future.

8. Acknowledgements

Authors would like to thank G. H. for making the calibration infrastructure available and N. B. for all inspiring discussions.

9. References

[1] B.V. Hamon: A 1-100 Ω build-up resistor for the calibration of standard resistors. J. Sci. Instrum. 31450

